4/18/2011

Introduction to Unix

Alark Joshi

Adapted from University Technology Services, Ohio State University

History of Unix

1960’s — Multics Project (MIT, GE, AT&T)
1970’s — AT&T Bell Labs

1970’s/80’s — UC Berkeley

1980’s — DOS imitated most of Unix ideas

— Commercial Unix fragmentation
— GNU Project

1990’s — Linux

Since then Unix and Linux have become
widespread and available from many sources

Unix Philosophy

Multi-user and Multi-tasking

Toolbox approach

Flexibility/Freedom

Conciseness

Everything is a file

File system has places, processes have life
Designed by programmers for programmers

Structure of the UNIX OS

Kernel

Hardware

System Calls

Image credits: http:

4/18/2011

The File System

’gf,,,j:;;;fﬂ~%3E$$::ﬁhxa
bin elc lib \usr dev tmp h
1

sh date csh ibc.so bin man local ttya null
passwd group bin man sre frank lindadb rfunk

mail bin src

Unix Programs

 Shell is the command line interpreter
— Just another program

* A program or command
— Interacts with the kernel
— Could be either:
* Built-in shell command
¢ Interpreted script
¢ Compiled object code file

Unix Command Line Structure

¢ A command is a program that tells the Unix
system to do something. It has the form

command options arguments
¢ “whitespace” separates parts of the cmd line
¢ An argument indicates the input for the
command to perform its action
¢ An option modifies the command, usually
starts with a ‘-’

Getting Help in Unix

¢ man — On-line manual

% man command
% man —k keyword

4/18/2011

Control Keys

AS — Pause display
AQ — Restart display

AC — Cancel operation
AU - Cancel / Clean line
AD —Signal End of File

List directory contents

Is [options] [arguments]

-a: list all files

-I : long listing (mode, link info, owner, size, last
mod)

-g : Unix group (requires —| option)

List directory contents

Each line (when using —I option of Is)
includes the following:
— Type field (first character)
— Access permissions (characters 2-10)
* First 3 — User/Owner
¢ Second 3 — Assigned Unix group
* Last 3 — Others/ Rest of the world

Permissions

* Designated as
—r: read permission
— w: write permission
— X: execute permission
— -1 no permission

4/18/2011

Commands to Change Permissions

¢ chmod — change file or directory access
permissions

¢ chgrp — change the group of the file
¢ chown — change the owner of the file

Changing Permissions of a File

chmod [options] file
Using + and — with a single letter:
— u: user owning file

— g: those in assigned group
— 0: others

e chmod u+w file

— gives the user (owner) write permission

e chmod o-x file

— removes execute permission for others

Changing Permissions of a File

e chmod [options] file
* using numeric representations:
—-r=4
—w=2
-x=1
—Total: 7
e chmod 777 filename

— gives user, group and others read, writer and exec
permissions

Changing Permissions of a File

chmod 750 file

— gives the user read, write and execute
— gives group members read, execute

— gives other no permissions

4/18/2011

Changing Permissions of a File

 chmod 640 file
— gives the user read, write
— gives group members read
— gives other no permissions

Disk space commands

« df [options] [directory]

 Display free disk space
% df -k /

e du [options] [directory]
% du .

Status of Processes

* ps [options]

% ps
% ps —ef
% ps auxw

¢ Options vary with flavor of OS — see man
pages

Terminate a process

o kill [-signal] processliD

% kill —1

— displays the available kill signals

% kill -9 processliD

— Last resort — “nuke” process

4/18/2011

Program Locations

« whereis [options] command
-b : report binary files only

-m : report manual page files only

-s : report source files only

e Examples:
—% whereis mail
—% whereis —b mail
—% whereis —m mail

Report the command found

 which command

e will report the name of the file that will be
executed when the command is invoked
— Full path name
— Alias found first

Information about the Machine

* hostname

— Reports the name of the machine that the user is
logged into

e uname [options]
— has additional options to print information about
system hardware and software

Record your session

e script [-a] Filename
-a : append content to a file
%script

(.. commands)

% exit

% cat typescript

e typescript is the default name of the file used
by script

4/18/2011

Link to another file

* In [options] source target

% In —s chkit chkmag
— symbolic link

% In chkit chkmag2
— hard link

¢ Hard links cannot link paths on different volumes or file
systems.

¢ Symbolic links may point to any file or directory irrespective
of the volumes on which the source and destination reside.

¢ Hard links always refer to an existing file, symbolic links
may contain arbitrary text that doesn't point to anything.

Find Files

« find directory [options] [actions] [.]

% find . —name ay —Is
% find . —newer empty —print
% find /usr/local —type d -print

Compression

e compress [options] [Ffile]
e zcat [file.Z]
e uncompress [options][file.Z]

% compress logins.*

% zcat archive.Z | head

% uncompress logins. *.Z

¢ gzip/ gunzip often used too - .gz extension

Archive Files

* tar [options] [directory/Tile]
* Options:

— c: create an archive

—t: table of contents list

— x : extract from archive

— ffile : Archive file is named file

— v :verbose

4/18/2011

Archive Files

% tar —cf logfile.tar logs.*
% tar —tF logfile.tar
% tar —xF logfile.tar

Find text in a File

» fgrep [options] text [files]
* Simplified version of grep
 fgrep is used to search of exact strings in text
files
* Options:
—irignore case
— v: display online lines that don’t match
— n: display line number with matching line

Shells

¢ The shell sits between you and the operating
system
— Acts a command interpreter
— Reads input
— Translates commands into actions

¢ To see what your current login shell is:
—echo SSHELL

Bourne Shell (sh)

* Great features for 1/O Control — often used for
scripts

* Not as well suited for interactive users
* Default prompt is S

4/18/2011

C shell (csh)

Uses C-like syntax for scripting

I/0 not as straightforward as Bourne Shell
Nicer for interactive use

Job control

History

Default prompt is %

Uses a ~ symbol to indicate a home directory

Other Shells

e Based on Bourne Shells:
— Korn shell (ksh)
— Bourne-Again Shell (bash)

—Z Shell (zsh) - Extended Bourne improvements,
including some features of bash, ksh, and tcsh.

¢ Based on C-shell
— T-Cshell (tcsh)

Environment Variables

DISPLAY

EDITOR

PAGER

PATH

TERM

csh setenv NAME value

sh NAME = value; export NAME

Shell Variables

e csh set name = value
e sh name = value

* These are used by the shell and shell scripts;
not seen or used by external programs

4/18/2011

Shell Startup

The file .profile (sh) or .login (csh) is used at
login to:

— Set Paths

— Define functions

— Set terminal parameters (stty)

— Set terminal type

— Set default file permissions (umask)

.login and .cshrc

¢ .login runs only at login time

* Tells you whether you have mail

* Who else is online

e Configure terminal settings

* .cshrc runs whenever the shell starts
* set environment and shell variables

set aliases

Changing your shell

chsh
passwd —e /usr/local/bin/tcsh

The new shell must be the full path name for
the shell on the system

Shell paths in some cases:

— Bourne: /bin/sh

— Korn : /bin/ksh

— C: /bin/csh

—Zsh: /bin/zsh

Unix 1/O

* |/O Redirection and piping
— Output redirection to a file
— Input redirection from a file
— Piping
¢ Output of one command becomes the input of a
subsequent command

Is -1 | wc

10

4/18/2011

Standard File Descriptors

e stdin — Standard input to the program
¢ stdout — Standard output from the program
¢ stderr — Standard error output

¢ These are not called by name at shell prompt,
but are often references by these names

¢ stdin — Normally from keyboard, can redirect

e stdout & stderr — Normally to the screen, can
redirect

Redirection

e > Redirect Standard output to file
command > outfile

e >> Append standard output to file
command >> outfile

e <Input redirection from file
command < infile

e | Pipe output to another command

commandl | command 2

File Redirection

¢ To redirect stdout and stderr to separate files
e csh

% (command > outfile) >& errfile
e sh

$ command > outfile 2 > errfile

Other Special Command Symbols

e ; command separator

e & runcommand in the background

e && run the following command only if
previous command completes successfully

* || run the following command only if prev
command does NOT complete successfully

11

4/18/2011

Text Processing / Filters tr

* Filters perform some kind of a transformation * tr transliterates one set of characters into
on an input file to create the output another

* Examples:

— Convert lowercase letters to uppercase letters
tr a-z A-Z

— Convert voxels to X

tr aeiou XXXXX

— Caesar Cipher

tr A-Za-z D-ZA-Cd-za-c

uniqg and sort Regular Expressions

e unig removes adjacent duplicate lines from its

L e First described by Stephen Kleene
n}put , . * Used for pattern matching in Unix utilities like
uniq file File_new
grep and awk
e sort orders the lines in a file; Default order is * No standard notation

lexicographic
— n option specifies numeric sort

— kn sorts by the nth field (fields are space separated)
— rsorts in reverse

* Files/temp.c — sort temp.c and sort —n temp.c

12

4/18/2011

Elements of a RegEx

Atoms — Characters that can be combined to
make the pattern

Concatenation — Sequence of atoms
Alternation — choice between several patterns
Kleene Closure (*) — 0 or more occurrences
Positive Closure (+) — 1 or more occurrences

Character classes
—-e.g- tr a-z A-Z

grep

* Find lines in a file that match a particular
regular expression

grep [options] pattern [file/s]

* Options:
—v: find lines that don’t match the pattern
—f: get the pattern from file that follows
—i:ignore case

* egrep / fgrep have similar functionality with
more power

Metacharacters used in RegEx

:any single character except newline
A § :anchor to the beginning or end of line

[...]: match any character in the listed set;
ranges like [a-z] are allowed

[~...] : match any character not in listed set
Any character that doesn’t have a special
meaning represents itself

Backslash in front of a metacharacter
represents that character

Combining regular expressions

e Ifr, rl and r2 are regular expressions:

e r* : matches zero or more occurrences of r

* r+: matches one of more occurrences of r
(egrep only)

 r? : matches 0 or 1 occurrences of r (egrep
only)

* rlr2 matches rl followed by r2
e rl|r2 matcheseitherrlorrl

13

4/18/2011

grep Examples

e grep "this" *.c

— Search for the keyword this in all .c files in that dir
e grep -i "string" string.c

— Case insensitive searching
e grep “boise.*state” testfile

— Display all the lines that contain boise with some
text in between and end with state.

— grep "fopen.*r" *.c

grep Examples

e grep —-iw “token" string.c
— Check for the complete word token
* grep -A <N> “fopen’ filename.c

— grep —A 3 “fopen” file.c (display matched line with
3 lines after match)

e grep -B <N> “fopen" filename.c
— Display N lines before match

* grep -C <N> “fopen’ filename.c
— Display N lines before and after match

grep Examples

e grep —r “fopen” *

—Recursive search in subdirectories
* grep — “pattern” filename

— Count the number of occurrences

e grep —n “pattern” filename
— Show line numbers

grep Examples

e grep "\<c...h\>' /usr/share/dict/words

— list of all five-character English dictionary words
e grep "\<c.*h\>' /usr/share/dict/words

— selects all words starting with "c" & ending in "h“
e grep ‘¥’ [etc/profile

— To search for the asterisk character using *’

14

4/18/2011

ed sed

A line editor e sed is a filter that edits the lines of a file
according to a set of one of more commands

¢ sed commands come from the ed editor
e Typical usage is:

Can be run from a script
Commands are a single letter

Most commands can be preceded by a line — sed ‘commands’ files
number (a literal number, . for current line, $ — commands enclosed in single quotes
for last line of the file), or a range of line — There can be any number of files. If files is empty,

input comes from standard input (stdin)
— Output goes to standard output (stdout)
e Commands applied to each line

numbers (n1, n2) or % for all lines in the file)

In Vi, you can use ed commands by typing a :
followed by a command

sed sed examples

sed [options] command [filenames ...]

-f option allows the commands to come from
a file. In the file, you can have multiple
commands. Each goes on a separate line.

-n suppress automatic output. Use p to print

s/old/new/ f1f2 replace old by new

y/strl/str2 replace each character from
strl with corresponding character from str2

d delete line (use with pattern or a count)

the lines you want. e p printcurrent line (if output is suppressed)
-i in-place modification (results go to stdout by * wfile writeline to afile
default) . q quit

-e allow you to put more than one command
in a single call to sed

15

4/18/2011

sed examples

e echo "123 abc" | sed 's/[0-9]*/& &/*

— Displays 123 123 abc

sed 's/\([a-z]*\).*/\1/*

— Keep the first word of the line and remove the rest

sed 's/"\(A\NC\NA3\2\L/

— Reverse the first three characters

* sed 's/\([a-zA-Z]*\) \([a-zA-Z]*\) \1 /

— Delete the 2" word in a string

Substitution

Adding lines to the output

* You can add extra lines to the file being
processed using the following commands:
—r Insert text from file
—a Append lines to output
—1i Insert text before next output
— ¢ Replace lines by following text

¢ Lines to be added end at the closing single
quote for the command

¢ You can specify which lines in the original file
are affected in the usual way

Flow Control

* sed has a primitive form of flow control

b label branch to label (goto)

e tlabel branch to label if substitution is made
on current line

e :label setlabel for b and t commands
e {} create a compound statement
e lcmd do cmd if line is not selected

e Resource: www.grymoire.com/Unix/Sed.html

16

4/18/2011

awk

¢ awk is a language that uses regular
expressions to determine which lines of a file
to process

¢ The form of an awk program is

pattern {actions}

¢ where pattern is a regular expression or a
logical expression and action is commands to
process the line that matches

awk

 Each line is broken up into words (whitespace-
delimited); each word can be accessed by its
position in the line

e SOis the entire line

S1, 82 ... are the individual fields

* This is especially useful for files that contain
many lines with basically the same structure

Using awk

¢ awk runs the program specified in the command
line on each file listed
awk program file ..

¢ The program can be provided literally or the —f
command line option can specify the file that
contains it

¢ Variables can be assigned values from the
command line
— vvar=val

¢ Use —F fs to use a field separator other than
whitespace

Patterns in awk

e Patterns can be regular expressions with the
usual metacharacters

e There are a number of pre-defined character
classes
—\w for letters, digits and the underscore character
—\W for characters that are NOT letters, digits or _

e Patterns can be relational expressions with the
usual comparison operators

17

4/18/2011

Patterns in awk

The ? : operator can be used to select a
pattern

Patterns can be negated with !
Patterns can be combined with && and | |
Multiple patterns can be separated by commas

BEGIN and END are special patterns that match
the start and end of the file respectively

Useful String functions

¢ gsub (pattern, replacement], string])
— gsub replaces globally
— default string is SO
— returns number of replacements

e index (string, toFind)

¢ length (string)

e split (string, array [, fieldSep])

* substr(string, start [, length])

awk Built-in variables

ARGC, ARGV — command line arguments
FILENAME — name of current file

FNR —record number in current file

NR — number of records read so far in all files
FS — field separator (“ ” by default)

RS — record separator (newline by default)
RSTART - start of string matched

awk Examples

e awk '/fopen/ ' temp.c
— Print line that matches the pattern
e awk '{print $2,55;} employees.txt

— Print only specific words/fields in a file

awk "BEGIN {print
“Name\tDesignation\tDepartment\tSalary';}

{print $2,"\t",$3,"\t",$4,"\t",$NF;}
END{print "Report Generated\n--------—-——-—- "3
}" employees.txt

— Format text

18

4/18/2011

awk Examples

awk '$1 >200' employees.txt
— Display employees whose id is greater than 200
awk '$4 ~/Technology/' employees.txt

— Display employees in the Technology department
awk 'BEGIN { count=0;} $4 ~ /Technology/ { count++; } END {
print "Number of employees in Technology Dept =",count;}'
employees.txt

— Print number of employees in the Technology

department

References

The UNIX Programming Environment —
Kernighan and Pike

The AWK Programming Language, Ajo,
Kernighan and Weinberger

sed & awk — 2" edition, Dougherty and
Robbins, O’Reilly

GNU sed Manual
Mastering Regular Expressions — Fried|

19

