
[an error occurred while processing this directive]

A UNIX Reference

UNIX Command Syntax

UNIX commands are usually given by typing the name of the command,
followed by options (if needed), followed by command-line arguments (if
needed), all separated by spaces. The command is executed when you hit
the return key.

Options are usually one or two characters preceeded by a minus sign.
Command-line arguments are often names of files or directories. For
example, the following command prints the file named lab1a.C to the
printer named mwah177 (-Pmwah177 option) in a 2-column rotated format (-2r
option).

 enscript -2r -Pmwah177 lab1a.C

UNIX Input and Output Redirection

Normally, when a UNIX command is executed its input comes from the
keyboard and its output goes to the screen. Redirection allows a
command to be executed with input coming from a file or output going to
a file.

command < file1

executes command with input from file1,

command > file2

executes command with out to file2, and

command < file1 > file2

executes command with input from file1 and output to file2.

UNIX Pipes

Piping is used to connect the output from one program to the input of
another program. For example,

command1 | command2

executes both command1 and command2, but command2 will get its input
from the output produced by command1, rather than reading input from
the keyboard.

Environmental Variables

In UNIX, you can define environmental variables, which are named string
values. The name, preceded by a dollar sign, can be used in UNIX
commands. One use for environmental variables is defining shortcut
names for files or directories with long pathnames.

The printenv command is used to display environment variable definitions.
If it is given with no arguments then all environmental variables wil be
displayed. You can also give the command with a single argument, which
is the name of an environmental variable without a dollar sign. Then the
definition of that variable is displayed.

The setenv command is used to define an environmental variable. The first
argument names the variable. The second argument is the string value for
the variable. It is a good practice to put the string value in quotes. This is
essential if the string value contains any blanks.

For example, suppose you want to define a variable named INTRO to have
the string value "/home/usra/COURSES/cs1623". To do this you give the
command

 setenv INTRO "/home/usra/COURSES/cs1623"

Then to check the variable give the command

 printenv INTRO

This should display the string value without quotes.

If you want to read the file /home/usra/COURSES/cs1623/UNIX using vi, you
would give the command

 vi $INTRO/UNIX

The UNIX Command History Mechanism

Most UNIX command interpreters can record earlier commands and have
a special syntax for repeating earlier commands. The following
commands are understood by the UNIX C shell command interpreter:

 !!

reexecute the previous command

 !pattern

reexecute the most recent command that matches pattern.

For example, giving the command !v results in reexecuting the most
recent command that begins with the letter v. For vi users this is a way of

resuming an edit session on a file after an interuption.

UNIX Directories

UNIX files are located in directories, which are special files that contain a
table of their contents. A directory can contain other directories, resulting
in a heirarchical directory structure, similar to a family tree. When a file or
directory A is is contained in directory B then we say that B is the parent of A
and that A is a child of B. A path is a sequence of directories or files in
which each is the parent or child of the one that follows it. A downward
path is a sequence of directories or files in which each is the parent of the
one that follows it. If there is a downward path from A to B then we say that
A is an ancestor of B and that B is a descendant of A. In a UNIX system there
is a directory called the root directory that is an ancestor of every file or
directory.

While you are logged on a UNIX system, there will always be one directory
whose contents are readily accessible. This directory is called your current
working directory. When you first log on to a UNIX system, your current
working directory is a directory that is called your home directory. Each
system user has their own home directory.

At first, you will probably keep all of your files in your home directory,
which will not have any subdirectories. After you have created a lot of files
you will probably want to use subdirectories to organize the files. When
you get to this point, you should read about naming UNIX files.

UNIX has a command, mkdir, for creating new directories. If you need to
change the structure of your directories, you can use the rmdir command
to remove directories and the mv command to move or rename
directories.

You can change your current working directory using the cd command.
This gives you the capability of navigating through the UNIX file system.
You can see what your current working directory is by using the pwd
command and list the contents of the current working directory with the ls
command. Finally, you can set access permissions on directories with the
chmod command.

Naming UNIX Files and Directories

When you first start working with UNIX, file names are simple. You keep all
of your files in your home directory and if you need to work with them you
use the name that you specified when you created the file. After a while,
you accumulate too many files to keep track of or to list using the ls
command. Then you need to start using subdirectories to organize your

files.

In UNIX, the simple names that you used at first only apply to files that are
in your current working directory. For other files, you need to specify the
directory that contains the file in addition to its simple name. There are
two ways of doing this: absolute path names, and relative path names.

Absolute Path names

An absolute path name always begins with a forward slash (/). It specifies
a downward path from the root directory to a file or directory. The absolute
pathname for a file or directory is constructed by listing, in order, the
names of all of the directories in the path from the root directory to the
named file or directory. The names are separated by forward slashes with
no spaces.

For example, the root directory contains a subdirectory named usr, which
contains a subdirectory named bin, which contains an executable file
named vi. This is the vi editor program. Its absolute path name is
/usr/bin/vi. The leading forward slash says to begin at the root directory
(it is an absolute pathname). The usr says go into the usr subdirectory. The
bin says go into the bin subdirectory. The vi says take the file named vi.

Relative Path names

A relative path name is constructed like an absolute path name in that it is
formed with a sequence of directory or file names separated by forward
slashes. However, a relative path name does not begin with a forward
slash, and it describes a path starting from the current working directory,
which is not included in the name. If your current working directory is /user
then the relative path name of the vi program is bin/vi. The relative path
name of a file in your current working directory is just the simple name of
the file.

Relative path names do not have to use downward paths. They can use
upward steps with the .. filename abbreviation. For example, the directory
/usr also contains a subdirectory named etc. If this is your current working
directory then the relative pathname of the vi file is ../bin/vi.

UNIX Filename Abbreviations

Here are some abbreviations that can be used to simplify long path names
for files and directories:

. - the current working directory

.. - the directory above the current working directory

~ - your home directory

* - matches any string of characters that does not contain a /.

For example, the command

 cp /home/usra/COURSES/cs1623/lab3/* .

copies all files from the directory named /home/usra/COURSES/cs1623/lab3 to
your current working directory. When the * appears in a command-line
argument, the UNIX command interpreter generates a list of file names
with one name for each file whose name matches the argument. UNIX
environmental variables can also be used for customized pathname
abbreviations.

Navigating Through the UNIX File System

The cd command changes your current working directory. If no command-
line argument is given, it makes your home directory the new working
directory. Otherwise, there should be one command-line argument, which
is the name of the the directory that becomes the new working directory.

Displaying the Current Working Directory

The pwd command displays the absolute pathname of the current working
directory. It has no command-line arguments or options.

Listing Contents of Directories

The ls program lists files. Without command-line arguments, it lists the
files and subdirectories of the current working directory. Arguments can
be given to specify the name of files or directories to list. Some command
options are:

-l - list with more complete file information, including access
permissions and the latest modification time

-F - show subdirectories with a trailing slash (/) and executable
programs with a trailing asterisk (*)

-a - show hidden files and directories. Normally, files whose name
begins with a period are not shown by ls.

When the -l option is used, files are listed as shown below:

 -rw-r--r-- 1 gshute users 13875 Mar 10 13:17 UNIX
 |\-/\-/\-/ | \----/ \---/ \---/ \----------/ \--/
 | | | | | | | | | |
 t u g o l user group size time stamp name

The meanings of these fields are:

t - file type:
- for ordinary files
d for directories.

u, g, o - owner, group, and others permissions:
r for read
w for write
x for execute

l - number of links to the file
user - user owner of the file
group - group owner of the file
size - size of the file in bytes (characters)
timestamp - last modification time of the file
name - simple name of the file

UNIX File and Directory Permissions

The chmod command is used to change access permissions on files and
directories. The first argument specifies the desired permissions and the
remaining arguments name the files and directories. The first argument
can be formed as a sequence of characters containing either a plus sign
for adding permission or a minus sign for removing permissions. Letters
preceding the sign indicate who is affected by the change. Letters after
the sign indicate what kind of permission is affected.

For the letters preceding the sign use one or more of the following:

u - you
g - your group
o - others
a - all (you, your group, and others)

You will rarely need to change permissions for yourself or your group.

For the letters after the plus or minus sign use one or more of the
following:

r - read permission
w - write permission
x - execute permission

Read permission is required to read a file or to list the contents of a
directory. Write permission is required to modify a file or to add files to or
remove files from a directory. Execute permission is required to execute a
program file or to navigate into a directory (make it into your current
working directory).

For example, if you want to deny all types of access to files named filea
and fileb to others, you would give the following command:

 chmod o-rwx filea fileb

You can check the permissions on files and directories using the ls
command with the -l option.

Making New Directories

The mkdir command creates a new directory for each of its arguments.
The arguments are the names of the new directories.

Moving and Renaming Files and Directories

The mv command moves or renames files or directories. It has two forms.
To rename a file or directory use the following form:

 mv oldName newName

where oldName is the name of an existing file or directory and newName is
the new name for the file or directory.

To move files or directories to a new location use the following form:

 mv fileOrDirectory ... directory

All arguments except the last name existing files or directories, which are
are moved into the directory named by directory. directory must be the
name of an existing directory.

Removing Files and Directories

The rm command removes files and the rmdir command removes
directories. For either command you can specify any number of
arguments, which are the names of files or directories that you want to
remove. In order to remove a directory, you must first remove all of its files
and subdirectories. On most UNIX systems, the rm command is set up to
request verification prior to removing each file.

Browsing Files

UNIX has two commands specifically designed for browsing files: more
and less. These commands are used for reading files a page (screenful) at
a time. For both of these commands, the name of the files should be given
as command-line arguments. For example, to read a file named lab1a.C,
give one of the following commands:

 more lab1a.C

or

 less lab1a.C

After the program starts up, the file can be read a page at a time by hitting
the space bar. Type q to terminate the program. While the program is
running, you can get information on the commands that the program
understands by typing a question mark.

In addition, any UNIX editor can be use for browsing files.

Compilers

Large UNIX operating systems usually come with the following compilers:

javac - compiler for the Java language

cc - compiler for the C language

CC - compiler for the C++ language

f77 - compiler for the Fortran language (1977 standard)

pc - compiler for the Pascal language

In addition, two compilers written by the GNU free software foundation are
often installed:

gcc - compiler for the C language

g++ - compiler for the C++ language

The compilers will normally read source code from files whose names
have a suffix that indicates the language:

.java - Java

.c - C

.C, .cc, .cpp, or .cxx - C++

.f - Fortran

.p or .pas - Pascal

Most C++ compilers can also compile a C program, but the source code
file should use a C++ suffix.

NOTE: The following does not apply to Java programming, which uses a
different model of computation and execution.

If a program in any language is contained in a single source code file, then
a UNIX compiler can directly produce an executable file using the -o
option to specify the name of the executable file. For example, if you have
a C or C++ source code file named myprog.C and you want to produce an

executable file named myprog, then you give one of the following
commands:

 CC -o myprog myprog.C

or

 g++ -o myprog myprog.C

UNIX compilers are also designed for separate compilation, where a
program is broken up into several files. To do this, first each file is
compiled separately to produce a file called an object file, then the object
files are linked together to form an executable file. Object files produced
by UNIX compilers use the same name as the source code file except the
suffix is changed to .o. For example, if a C or C++ language program is
split into two files main.C and other.C then it can be compiled into an
executable file named myprog with the following commands:

 g++ -c main.C
 g++ -c other.C
 g++ -o myprog main.o other.o

The -c option in the first two commands direct the compilers to produce
object files. The first command produces an object file named main.o. The
second produces an object file named other.o. The third links these object
files together to produce an executable file named myprog.

Copying Files

The cp command copies files. It has two forms. To make a copy of a file
with a new name use the following form:

 cp oldName newName

oldName is the name of the existing file and newName is the name for the
new copy.

To copy files to a new location use the following form:

 cp file ... directory

directory must be the name of an existing directory. The remaining
arguments name existing files. These files are copied into the directory
named by directory, keeping their original names.

Displaying Files

The cat command displays files. The arguments to the cat command
should be names of files. All of the files are displayed on the screen
without pausing.

Editing Files

Most UNIX systems have two editors: vi and emacs. Often, there is a third
editor: pico. Use of these programs is not described here.

Online Documentation

You can get online documentation on all UNIX commands by using the
UNIX man command. For example, to get documentation on the ls
command give the command:

 man ls

The quality of documentation given by the man command varies
considerably.

Electronic Mail

Most UNIX systems have two mail programs: mail and elm. Often, there is a
third mail program: pine. Use of these programs is not described here.

Printing Files

Many UNIX systems use the lpr command for printing, and some also use
the enscript command. For all printing commands, the name of the file to
be printed is specified as a command-line argument. The printing
commands also accept a -P option to specify which printer to print on. For
example, to print a file named lab1a.C using enscript to a printer named
mwah177 you give the following command:

 enscript -Pmwah177 lab1a.C

Recording a UNIX Session

The UNIX script command can be used to record a sequence of UNIX
commands and the output that they generate. It takes one optional
command-line argument. If the argument is given it specifies the name of
the file in which the record will be placed. If the argument is missing then
the record is placed in a file named typescript.

As soon as you give the script command, the program begins recording
characters that you type along with output generated by programs that
you run. You can terminate the script program by typing ctrl-D.

You should not run an editor or a text browsing program while the script
program is running. Editors and text browsing programs put out a lot of
screen control characters that make the typescript difficult to read. If you

want to display a file and have it captured in the typescript, give the UNIX
command

 cat filename

Other Sources of Information

The C Shell tutorial
An Introduction to the C shell
Archive for "Using csh & tcsh"

[an error occurred while processing this directive]

